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This paper replicates the estimates of a fractional response model for share data reported in the 
seminal paper of Leslie E. Papke and Jeffrey M. Wooldridge published in the Journal of Applied 
Econometrics 11(6), 1996, pp.619-632. We have been able to replicate all of the reported estima-
tion results concerning the determinants of employee participation rates in 401(k) pension plans 
using the standard routines provided in Stata. As an alternative, we estimate a two-part model 
that is capable of coping with the excessive number of boundary values equalling one in the data. 
The estimated marginal effects are similar to those derived in the paper. A small-scale Monte Carlo 
simulation exercise suggests that the RESET tests proposed by Papke and Wooldridge in their ro-
bust form are useful for detecting neglected non-linearities in small samples. 

Introduction
In many applications, the situation in which share data 
are confined to the [0,1] interval must be addressed, and 
in addition, the data may include a significant amount 
of observations of the dependent variable taking on val-
ues at the boundaries of 0 or 1. While share data can be 
handled using log-odds transformed variables, the com-
bination of these two issues is complex. In their seminal 
paper, Leslie E. Papke and Jeffrey M. Wooldridge (1996) 
propose a fractional response model that extends the 
generalised linear model (GLM) literature from statis-
tics. In a recent paper, Papke and Wooldridge (2008) in-
troduce fractional response models for panel data. The 
authors introduce a quasi-maximum likelihood estima-
tor (QLME) to obtain a robust method for estimating 
fractional response models without an ad hoc transfor-

mation of the boundary values. The paper shows that 
the proposed QLME is consistent given that the con-
ditional mean function is correctly specified (see their 
equation 4). In addition, the authors introduce robust 
Ramsey RESET tests for the correct specification of the 
mean function. Finally, the paper provides an applica-
tion of this estimation procedure: estimating a model of 
employee participation rates in 401(k) pensions plans. 
Ramalho, Ramalho and Murteira (2011) provide a com-
prehensive up-to-date overview on the econometrics of 
fractional response models.

Papke and Wooldridge (1996) consider the follow-
ing model for the conditional expectation of the frac-
tional response variable: 

,1,...,=) ,(=)|( NiGyE iii βxx  (1)

where 10 ≤≤ iy  denotes the dependent variable 
and (the k×1  vector) ix  refers to the explanatory 
variables of observation i . Typically, (.)G  is a dis-
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tribution function similar to the logistic function 
))(exp)/(1(exp=)( zzzG + , which maps z to the (0,1)  

interval. The authors follow the methods of McCullagh 
and Nelder (1991) and suggest maximising the Ber-
noulli log likelihood with the individual contribution 
given by the following (Papke & Wooldridge, 1993 also 
consider the case in which the group size is known and 
is given by in . They show that in this case, the condi-
tional likelihood for observation i  is the same as that 
in (2), but it is weighted by in ):

)].([ 1log)( 1) ]([log=)( βxβxβ iiiii GyGyl −−+  (2)
 

In this formulation of the likelihood function, the 
number of draws (here, the number of eligible employ-
ees of each firm) drops out be¶cause it does not de-
pend on the parameters. Rather, the share of successes, 
i.e., the participation rate, enters the likelihood directly 
(see McCullagh & Nelder, 1991, p. 114).

The consistency of the QLME follows from the 
study by Gourieroux, Monfort & Trognon (1984) be-
cause the density upon which the likelihood function 
is based is a member of the linear exponential family, 
and the assumption that the conditional expectation of 

iy  is correctly specified validates this finding. In fact, 
the QLME is N -asymptotically normal regardless of 
the distribution of iy  conditional on ix . Papke and 
Wooldridge (1996) provide valid (robust) estimators of 
the asymptotic variance of β  based on the well-known 
sandwich formula (see Cameron & Trivedi, 2005) and 
the non-linear conditional mean (.)G .

Papke and Wooldridge (1996) introduce and apply 
extended Ramsey RESET tests for 0=0  ,=: 210H  
in the augmented model ))()(( 3

2
2

1 βxβxβx iiiG ++ . 
 Their first RESET test is non-robust because 
it maintains the GLM variance assumption: 

) ]()[1(=)|( 2 βxβxx iiii GGyVar − . The robust RESET 
test only requires the correct specification of the condi-
tional mean. Details on calculating the RESET test are 
provided on pages 623-625 in their paper.

In many applications, including that presented in this 
paper, there is a significant share of boundary values. 
Considering the data-generating process in the paper 
by Papke and Wooldridge (1996) literally, one would 
use the number of eligible employees as the number 
of Bernoulli draws. However, in the full sample, the 
mean firm size is 4621 and the median firm size is 628. 

Basing the Bernoulli draws on these numbers makes 
a boundary value of 1 in PRATE a rare event. Thus, in 
the case where 42.7 per cent of the boundary values in 
the data are equal to 1, it appears plausible to assume 
that firms that exhibit 100 per cent participation rates 
in their pension plans behave differently and are not 
well described by the Bernoulli model.

According to problem 19.8 in Wooldridge (2002), 
Ramalho and Vidigal da Silva (2009) and Ramalho, Ram-
alho and Murteira (2011), we can alternatively consider 
a two-part model that accounts for an excessive number 
of boundary values that are equal to one (refer to Pohl-
meier and Ulrich (1995) for an early application of a two-
part model for count data). We define: 
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and assume for the first part of the model that 
)(=)|1=(=)|1=( γiiiii GyPyP xxx∗ , where )( γiG x  

denotes the cumulative logistic distribution function. 
The second part of the model is the fractional response 
model that refers to observations iy  ε  [0,1). Then, the 
conditional mean of the two-part model is specified as 
the following: 
 

)|1=(0  ]=,|[)|0=(=]|[ iiiiiiiii yPyyEyPyE xxxx ∗∗∗ +

) .()())(( 1= γβγ iii GGG xxx +−  (4)
 

The marginal effects of the explanatory variables can 
be derived as follows: 
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This model allows the explanatory variables to affect the 
outcome ( 1=iy ) and size of iy  at iy  ε  [0,1) in a differ-
ent way. More importantly, the explanatory variables in 
the first and second parts of the model are not required 
to be the same. Under this specification (quasi) maxi-
mum likelihood estimation is straightforward because it 
can be separated into the estimation of the logit model 
explaining )|1=( iiyP x∗  using all of the observations 
and the estimation of the parameters of the conditional 
density 0  )=,|( ∗

iii yyf x  based only on the observation 
where 1<iy . Essentially, the conditional distribution 
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of 0=,| ∗
iii yy x  is derived from the unconditional bi-

nomial distribution through division by in
iG )(1 βx−  so 

that

1)( 1 ))(( 1))(( 1)(=0  )=,|( −−∗ −−
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where in  is the number of eligible employees (see also 
Papke & Wooldridge, 1993). In the case where in  is 
large, the last term will be equal to approximately 1. In 
the following derivation, we neglect this term. In fact, 
the second part of the model is defined as the fractional 
response model, as introduced above. Again, the criti-
cal assumption that is necessary to obtain consistent 
parameters is the correct specification of the condi-
tional mean, which now requires the correct specifica-
tions of )|1=( iiyP x∗  and 0  ]=,|[ ∗

iii yyE x .

The replication exercise
In their application, Papke and Wooldridge (1996) are 
interested in an econometric model of the participation 
rates in 401(k) pension plans. These plans are employer-
sponsored pension plans in which employees are per-
mitted to make pre-tax contributions and the employer 
may match part of the contribution. The dependent 
variable (PRATE ) is defined as the number of active 
pension accounts divided by the number of employees 
eligible to participate for a sample of US manufacturing 
firms. The explanatory variables of their model include 
the plan match rate of the employer (MRATE), the log  
size of the firm measured in terms of employment and 
the square of this value, the plan’s age and the square of 
this value and a dummy variable called SOLE  that indi-
cates whether the 401(k) pension plan is the only plan of 
its type offered by the firm. In sum, the following speci-
fication is estimated in Tables II and III of this paper: 

 
2

4321 )(log)(log(=)|( EMPEMPMRATEGPRATEE ββββ +++x

) .7
2

65 SOLEAGEAGE βββ +++  (6)

The linear specification assumes zzG =)( , while in the 
non-linear fractional response regression, G(.) is speci-
fied as a logistic function, i.e., ))(exp)/(1(exp=)( zzzG +  . 
In a second specification, the authors additionally in-
clude 2MRATE  as an explanatory variable.

Tables II and III in the paper report simple OLS esti-
mates and the QMLE of the fractional response model. 
The estimates in Table II use only the observations where 

1<MRATE , while the estimation results in Table III are 
based on all of the observations. There are no zeros in 
the dependent variable, but 42.7  per cent of the sample 
represents the firms in which all of the employees par-
ticipate in 401(k) pension plans so that 1=PRATE .

In Table II of their paper, the authors report that the 
firm’s matching rate has a significant positive impact. 
The log firm size and the age of the plan enter non-
linearly. The impact of the log  firm size is significantly 
negative, but increases for large firms. AGE  is signifi-
cantly positive but also has a decreasing effect. Last, the 
variable SOLE  is insignificant.

In Table II of the paper, the OLS estimates are rejected 
by both the non-robust and robust RESET tests, suggest-
ing that the linear model neglects important non-lin-
earities. However, the signs of the estimated parameters 
are the same for the OLS and the QLME estimates for 
all variables. There is an important difference between 
the OLS and QMLE estimates because the RESET tests 
(both in their robust and non-robust versions) do not 
reject the fractional response model. Furthermore, the 

2R  of the fractional response model is 6 percentage 
points higher compared to the linear model.

From an economic point of view, the difference be-
tween the two models is important because the fractional 
response model implies that there is a decreasing mar-
ginal effect of MRATE . The authors also conclude that 
simply adding ( 2MRATE ) to the linear model is not suffi-
cient to capture this non-linearity. The results in Table III 
of their paper show that the basic results do not change if 
the models are estimated over the entire sample. The only 
clear differences are that the quadratic term in MRATE  
is now significant and the RESET test does not reject the 
fractional response model that includes 2MRATE , but it 
rejects the baseline specification.

The authors estimated and tested the fractional re-
sponse model using GAUSS-code. We were able to eas-
ily replicate and verify their estimated results using the 
‘now available’ standard Stata code and specifically, the 
Stata procedure glm with options fam(bin), link(logit) 
and scale(x2) for non-robust standard errors and op-
tions fam(bin), link(logit) and rob for robust standard 
errors. In this way, we have been able to replicate each 
entry in Tables II and III. Therefore, the fractional re-
sponse model is attractive because it can be easily esti-
mated using standard econometric software. The Stata 
code is available upon request from the authors.
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Table 1.  Results for the Restricted Sample

  (1)  (2)  (3)  (4) 

 Variable  OLS  QMLE  Two-Part Model 

    Logit  QMLE 

MRATE  0.156  1.390  1.504  0.895 

 (0.012)  (0.100)  (0.160)  (0.089) 

 [0.011]  [0.107]  [0.166]  [0.097] 

log(EMP)  -0.112  -1.002  -0.852  -0.690 

 (0.014)  (0.111)  (0.200)  (0.092) 

 [0.013]  [0.110]  [0.197]  [0.094] 

log(EMP)2  0.052  0.054  0.039  0.037 

 (0.001)  (0.007)  (0.013)  (0.006) 

 [0.001]  [0.007]  [0.013]  [0.006] 

AGE  0.006  0.050  -0.006  0.054 

 (0.001)  (0.009)  (0.014)  (0.007) 

 [0.001]  [0.009]  [0.016]  [0.006] 

AGE2  -0.000  -0.001  0.001  -0.001 

 (0.000)  (0.000)  (0.000)  (0.000) 

 [0.000]  [0.000]  [0.000]  [0.000] 

SOLE  -0.000  0.008  0.585  -0.215 

 (0.006)  (0.047)  (0.078)  (0.039) 

 [0.006]  [0.050]  [0.078]  [0.040] 

ONE  1.213  5.058  2.316  3.420 

 (0.051)  (0.427)  (0.740)  (0.354) 

 [0.048]  [0.421]  [0.741]  [0.352] 

Observations  3,784  3,784  3,784  2,489 

SSR  93.666  92.695  -  92.506 

SER  0.157  0.438  -  0.390 

R2 0.142  0.152  -  0.153 

RESET  39.55  0.606  -  29.55 

 (0.000)  (0.738)  -  (0.000) 

Robust-RESET  45.36  0.782  -  23.85 

(0.000)  (0.676)  -  (0.000) 

Notes: See Table II in Papke and Wooldridge (1996). In the logit model, the value of the dependent variable is one if all employees 
participate in the 401(k) pension plan and is zero otherwise. The QMLE of the two-part model is estimated only for PRATE<1.    

We also estimated the two-part model using the ba-
sic specification proposed by Papke and Wooldridge 
(1996), which is reported in the first two columns of Ta-
ble II in their paper. As noted above, these estimates ex-
clude observations where 1>MRATE . For comparison, 
we reproduced the corresponding estimates in Table 1. 
In the logit model of the two-part model, the same vari-
ables that enter the fractional response model determine 
whether all of the employees participate in the 401(k) 

pension plans. Approximately all of the explanatory 
variables are significant, and for )(, EMPlogMRATE  
and 2)(EMPlog , we obtain the same signs as those in 
the fractional response model. In contrast to the results 
of the fractional response model, AGE  turns out to be 
insignificant, while 2AGE  is positive at a p-value slightly 
higher than 0.05 . The variable SOLE  is significantly 
positive, which is also in contrast to the estimate in the 
fractional response model.
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The second part of the fractional response model uses 
observations where 1<PRATE . With the exception 
of the significant negative impact of SOLE , we obtain 
qualitatively similar results as those of Model 2 in Table 
II of Papke and Wooldridge (1996). However, in quan-
titative terms, the parameter estimates are quite differ-
ent. The fit of the two-part model is comparable to the 
original estimates with 2R  amounting to 0.153 . Similar 
to the value of 2R  for the non-linear fractional response 
model in Papke and Wooldridge (1996), the value of 2R  
for the two-part model is based on the predicted values 
of all of the observations, including the boundary val-
ues. However, both the robust and non-robust RESET 
tests are rejected, indicating a possible misspecification 
of the second part of the fractional response model.

The main advantage of both the fractional response 
model and the two-part model is their ability to capture 
non-linearities, particularly in the decreasing effect of 
the matching rate. Table 2 reproduces the marginal 

effects of the matching rate of the estimated model, 
which are presented in columns 1 and 2 in Table II of 
the paper. To obtain this result, SOLE  is set equal to 0, 

13=AGE  and 100,000200;4,620;=EMP . The partial 
effects are computed at the matching rate values of 0, 
0.5  an 1. While the marginal effect under the linear 
model amounts to 0.156, it diminishes for both the 
fractional response model and the two-part model. 
The fractional response model implies an increase in 
PRATE  by 2.9 percentage points as a response to an 
increase in MRATE from 0 to 0.1. Under the two-part 
model, the effect is smaller and amounts to 2.1 per-
centage points. Conversely, at 1=MRATE , the mar-
ginal effect of the two-part model is 1.3 per cent com-
pared to an effect of 1.2 per cent, which was implied by 
the fractional response model. Generally, the two-part 

model results in relatively small marginal effects at low 
values of MRATE , but in a less pronounced decrease 
in the marginal effects as MRATE  increases.

When observing the in-sample predictions of the 
estimated models, we found two puzzling results. First, 
it can easily be observed from the specification of the 
conditional mean under the logistic link assumption, 
i.e., ) )(exp)/(1(exp=)( zzzG + , that both of the consid-
ered models rule out values of 1 in the dependent vari-
able. Put differently, the models by definition always 
predict a value that is lower than one for those obser-
vations of PRATE  that fall on the boundary 1.

Table 3 presents the calculations of the mean of the 
residuals resulting from the estimates in Table II in the 
paper as well as for the two-part model within each 
quintile of PRATE  and, separately, for the values on 
the boundary cases where 1=PRATE . As expected, 
the residuals are positive for the values of 1=PRATE  
for both the OLS estimation and the QMLE. Addition-

ally, there is virtually no difference between the con-
sidered models.

Second, we observed systematic effects in the re-
siduals of both the linear and non-linear models. For 
the observations where 1<PRATE , all of the consid-
ered models overpredict for the lower three quintiles 
of PRATE  and underpredict for the two upper quin-
tiles. The same pattern is found for the residuals of 
the two-part model. In fact, the residuals of the four 
estimated models in Table II of Papke and Wooldridge 
(1996) and those of the two-part model are highly cor-
related, with correlations as high as 0.99. As in many 
applications, there is only a minor difference between 
the linear and non-linear models in terms of the root 
mean squared prediction error, and using a logistic 
link function leads to only small improvements.

Table 2.  The Marginal Effects from the QMLE and the Two-Part Model

EMP=200 EMP=4,620 EMP=100,000

 MRATE  QMLE  Two-Part  QMLE  Two-Part  QMLE  Two-Part

 0  0.172  0.164  0.288  0.214  0.273  0.195 

0.5  0.100  0.113  0.197  0.176  0.182  0.157 

1  0.054  0.063  0.118  0.127  0.106  0.115 
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A small scale Monte Carlo exercise 
on the performance of the proposed 
RESET tests
 To investigate the performance of the proposed RESET 
test, we established a small Monte-Carlo simulation ex-
ercise. Bernoulli random variables were generated using 
the predicted participation rates of column 4 of Table 
II in the paper, assuming that the reported parameters 
are the true values (see Equations 2 and 3). Because the 
Bernoulli random variable measures the number of suc-
cesses in n  trials, we set 10=n  in the first experiment 
to generate a large share of ones (approximately 20 per 
cent). To obtain the share variables, we divided the re-
sulting Bernoulli random number by n  (and similarly 
in the other experiments). The drawback of this design 
is that we obtained only nine different realisations of 
the generated random variable. In Experiment 2, we set 

1000=n , while in Experiment 3, we allowed n  to vary 
and assumed that EMPn = . The latter experiment in-
troduces additional heterogeneity and violates the nom-
inal variance assumption because the log of the number 
of employees and its square are used as regressors (see 
equation 6 in the paper and the discussion below). Ex-
periments 4 and 5 are identical to Experiments 2 and 
3, but assume that the estimated logit model is the true 
data generating process for the boundary values. We 
generated a uniformly distributed random variable and 
set the simulated value of PRATE  to 1 if this random 
variable is lower than the predicted probability, as im-
plied by the logit model. Then, we applied the two-part 
model and estimate a fractional response model using 
only the non-boundary values.

We calculated the bias and root mean squared er-
ror (RMSE) of the estimated parameters resulting from 

10,000 replications of Monte Carlo experiments. Fol-
lowing the methods of Kelejian and Prucha (1999), 
we define the bias as )( θθ −�med  and RMSE as 

0.522 )/1.35)(( IQBias + , where IQ is the interquantile 
range. In all of the experiments, the estimated pa-
rameters are virtually unbiased. With the exception of 
Experiment 1, the RMSEs are relatively small. In par-
ticular, the RMSEs are considerably smaller than the 
standard errors reported in the paper, which originate 
from estimated models that have a significant share of 
boundary values.

To obtain the power curves of the RESET tests, we 
assume that 1γ  takes on values in the range of values 
including 0.025}005,0.015,0.005,0,0.0.015,0.025,{ −−−  
and 2γ  is 1/5 th of 1γ . Because the power had a sig-
nificantly low value in Experiment 1, we scaled the γ
- values for this experiment by a factor of 10. In each 
experiment, we added 3

2
2

1 )()( βxβx ii γγ +  to the linear 
predictor. Therefore, at 0== 21 γγ , the share of rejec-
tions in the respective experiment is an estimate of 
the size of the RESET tests, and at 01 ≠γ  or 02 ≠γ , the 
value for the power of the test is obtained.

In Tables 4 and 5, the simulated size (in bold fig-
ures) and power of the RESET tests are displayed for 
a nominal size of 0.05. For each value of 1g , the first 
lines in the tables refer to the non-robust RESET test 
and the second lines refer to the robust version. While 
the RESET tests are properly sized under Experiment 
1 and 2, we find the correct size for only the robust RE-
SET test under Experiment 3, as expected. Although 
the construction of the share variable often remains 
unobserved empirically, its calculation is important 
for estimating and testing the fractional response 
models, as argued by Papke and Wooldridge (1996). In 

Table 3.  Residuals from the OLS, the QMLE and the Two-Part Model 

 Prate  OLS  QMLE  Two-Part

1st Quintile  0.552  -0.284  -0.280  -0.280 

2nd Quintile  0.720  -0.111  -0.111  -0.111 

3rd Quintile  0.802  -0.035  -0.038  -0.037 

4th Quintile  0.876  0.032  0.030  0.031 

5th Quintile  0.949  0.087  0.084  0.085 

PRATE=1  1.000  0.127  0.127  0.127 

Total  0.937  0.000  0.000  -0.000

Note: The figures are based on the means within the respective quintile.    
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Table 4.  Power and size of the RESET tests under the Fractional Response Model for Experiments 1, 2 and 3 

Experiment g2  -0.050  -0.030  -0.010  0.000  0.010  0.030  0.050 
g1

1  -0.250   1.000  1.000  0.939  0.250  0.993  0.549  0.292 
1  -0.250   1.000  1.000  0.919  0.227  0.992  0.536  0.342 
1  -0.150   1.000  0.363  1.000  0.989  0.668  0.103  0.791 
1  -0.150   1.000  0.331  1.000  0.986  0.644  0.133  0.835 
1  -0.050   0.999  1.000  0.754  0.192  0.049  0.565  0.965 
1  -0.050   0.999  1.000  0.716  0.164  0.057  0.626  0.975 
1  0.000   1.000  0.995  0.229  0.046  0.152  0.780  0.984 
1  0.000   1.000  0.992  0.191  0.049  0.191  0.822  0.990 
1  0.050   1.000  0.801  0.053  0.121  0.378  0.890  0.993 
1  0.050   1.000  0.747  0.046  0.151  0.434  0.912  0.995 
1  0.150   0.813  0.082  0.277  0.545  0.779  0.969  0.997 
1  0.150   0.745  0.055  0.317  0.602  0.819  0.977  0.998 
1  0.250   0.120  0.225  0.676  0.836  0.924  0.987  0.998 
1  0.250   0.070  0.256  0.720  0.868  0.942  0.991  0.999 

g2  -0.005  -0.003  -0.001  0.000  0.001  0.003  0.005 
g1

2  -0.025   1.000  1.000  1.000  1.000  0.986  0.409  0.184 
2  -0.025   1.000  1.000  1.000  1.000  0.986  0.406  0.183 
2  -0.015   1.000  1.000  0.993  0.887  0.473  0.097  0.808 
2  -0.015   1.000  1.000  0.993  0.884  0.467  0.098  0.807 
2  -0.005   1.000  0.998  0.577  0.164  0.056  0.680  0.998 
2  -0.005   1.000  0.998  0.567  0.158  0.054  0.679  0.998 
2  0.000   1.000  0.951  0.200  0.051  0.190  0.929  1.000 
2  0.000   1.000  0.947  0.195  0.052  0.193  0.928  1.000 
2  0.005   0.999  0.699  0.050  0.153  0.538  0.994  1.000 
2  0.005   0.999  0.689  0.050  0.154  0.541  0.993  1.000 
2  0.015   0.801  0.093  0.432  0.842  0.984  1.000  1.000 
2  0.015   0.791  0.085  0.435  0.844  0.984  1.000  1.000 
2  0.025   0.169  0.363  0.966  0.998  1.000  1.000  1.000 
2  0.025   0.160  0.362  0.966  0.998  1.000  1.000  1.000 
3  -0.025   1.000  1.000  0.985  0.925  0.753  0.264  0.200 
3  -0.025   1.000  1.000  0.983  0.916  0.729  0.209  0.083 
3  -0.015   1.000  0.988  0.790  0.534  0.291  0.160  0.454 
3  -0.015   1.000  0.985  0.753  0.472  0.209  0.059  0.312 
3  -0.005   0.991  0.814  0.345  0.181  0.146  0.380  0.814 
3  -0.005   0.987  0.769  0.234  0.087  0.051  0.263  0.762 
3  0.000   0.953  0.597  0.200  0.138  0.197  0.586  0.927 
3  0.000   0.935  0.499  0.093  0.050  0.098  0.501  0.910 
3  0.005   0.851  0.390  0.140  0.179  0.333  0.779  0.977 
3  0.005   0.792  0.250  0.049  0.092  0.242  0.740  0.975 
3  0.015   0.449  0.158  0.286  0.494  0.721  0.973  0.999 
3  0.015   0.283  0.053  0.215  0.440  0.701  0.970  0.999 
3  0.025   0.190  0.254  0.687  0.862  0.962  0.997  1.000 
3  0.025   0.064  0.199  0.671  0.856  0.962  0.998  1.000 

Notes: The DGP is assumed to be Model 4 reported in Table II of Papke and Wooldridge (1996). Bold figures refer to the size 
of the test; the remaining figures refer to the power. For each value of  g1, the first line in the table refers to the non-robust 
version of the RESET test and the second line refers to the robust version.
Experiment 1: Bernoulli random variable scaled by 10. 
Experiment 2: Bernoulli random variable scaled by 1000. 
Experiment 3: Bernoulli random variable scaled by employment.



Vizja Press&ITwww.ce.vizja.pl

63Fractional Response Models - A Replication Exercise of Papke and Wooldridge (1996)

Table 5. Power and size of the RESET tests under the Two-Part Model for Experiments 4

Experiment g2  -0.005  -0.003  -0.001  0.000  0.001  0.003  0.005 
g1

4  -0.025   1.000  1.000  0.997  0.977  0.862  0.269  0.093 
4  -0.025   1.000  1.000  0.997  0.977  0.857  0.264  0.091 
4  -0.015   1.000  0.999  0.879  0.609  0.290  0.065  0.434 
4  -0.015   1.000  0.999  0.871  0.600  0.280  0.062  0.431 
4  -0.005   0.999  0.904  0.328  0.104  0.053  0.354  0.895 
4  -0.005   0.999  0.897  0.315  0.097  0.054  0.354  0.893 
4  0.000   0.988  0.676  0.119  0.051  0.115  0.631  0.974 
4  0.000   0.987  0.660  0.112  0.049  0.117  0.628  0.973 
4  0.005   0.922  0.375  0.051  0.106  0.300  0.859  0.996 
4  0.005   0.914  0.358  0.050  0.105  0.298  0.859  0.996 
4  0.015   0.430  0.069  0.265  0.553  0.826  0.994  1.000 
4  0.015   0.410  0.064  0.263  0.555  0.823  0.994  1.000 
4  0.025   0.091  0.245  0.787  0.943  0.991  1.000  1.000 
4  0.025   0.086  0.246  0.788  0.943  0.991  1.000  1.000 
5  -0.025   1.000  0.993  0.892  0.771  0.588  0.259  0.162 
5  -0.025   0.999  0.986  0.854  0.706  0.492  0.152  0.060 
5  -0.015   0.990  0.902  0.601  0.411  0.270  0.153  0.274 
5  -0.015   0.982  0.854  0.481  0.290  0.149  0.051  0.150 
5  -0.005   0.907  0.624  0.284  0.188  0.153  0.243  0.546 
5  -0.005   0.851  0.485  0.137  0.070  0.047  0.143  0.453 
5  0.000   0.791  0.456  0.205  0.154  0.164  0.361  0.689 
5  0.000   0.683  0.285  0.073  0.053  0.067  0.268  0.623 
5  0.005   0.647  0.316  0.160  0.164  0.239  0.517  0.822 
5  0.005   0.481  0.147  0.047  0.068  0.141  0.438  0.788 
5  0.015   0.344  0.169  0.222  0.334  0.486  0.804  0.961 
5  0.015   0.151  0.052  0.146  0.269  0.432  0.780  0.954 
5  0.025   0.201  0.225  0.473  0.636  0.785  0.956  0.995 
5  0.025   0.061  0.150  0.436  0.614  0.767  0.956  0.995 

Notes: The DGP is assumed to be Model 4 reported in Table II of Papke and Wooldridge (1996). Bold figures refer to the size 
of the test; the remaining figures refer to the power. For each value of g1, the first line in the table refers to the non-robust 
version of the RESET test and the second line refers to the robust version.
Experiment 4: Bernoulli random variable scaled by 1000. Logit model of Table 1 is assumed to be the DGP. 
Experiment 5: Bernoulli random variable scaled by employment. Logit model of Table is assumed to be the DGP. 

this respect, our findings confirm the discussion of the 
RESET tests in the paper. The results of Experiments 
4 and 5 refer to the two-part model and confirm the 
findings of Experiments 2 and 3. Alternatively, we also 
investigated the case in which a fractional response 
model using all of the observations is estimated in the 
case of a large share of boundary values. The results, 
which are available upon request from the authors, in-
dicate that in this case, the RESET tests are oversized 
and their power tends to be considerably lower, even 
when taking into account that the tests are oversized. 
However, this finding has to be expected because this 
setup violates the conditional mean assumption.

Generally, the RESET tests exhibit sufficient 
power to detect neglected non-linearities. Only at 
small n values, as in Experiment 1, the power is 
not satisfactory. For this experiment, we obtained 
power figures comparable to the other experiments 
when scaling 1γ  and 2γ  by a factor of 10. The highest 
power of the RESET test is observed when either 1γ  
or 2γ  is zero and the corresponding non-zero value 
has a high absolute value. However, at large absolute 
values of 1γ  and 2γ  with different signs, the power 
of the RESET test results in a very low value. This 
result holds for the robust and non-robust versions 
of the RESET test.
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Conclusions
This paper replicated the results of the seminal paper 
of Leslie E. Papke and Jeffrey M. Wooldridge (1996) 
concerning a fractional response model for employee 
participation rates in 401(k) pension plans in US man-
ufacturing firms. Using the ‘now available’ standard 
Stata code, we have been able to replicate each estima-
tion result in the paper.

An important feature of their dependent variable is 
that more than 40  per cent of these data are equal to one, 
indicating full employee participation. To cope with the 
excessive number of boundary values, we additionally 
estimated a two-part model. The first part of this model 
estimates the probability of a boundary observation by 
a simple logit model. The second part of the model re-
fers to non-boundary values and is estimated by the same 
fractional response model. The estimation of the second 
part of the model yields slightly different results. How-
ever, the marginal effects of the matching rate that take 
both parts into account are comparable in size. The ef-
fects are slightly smaller, and the diminishing impact of 
the matching rate is less pronounced. Therefore, in the 
presence of a high share of boundary values, the two-part 
model is a useful alternative to the fractional response 
model. Moreover, it is as easy to perform the calculations 
using this model with the available standard software.

Looking at the in-sample predictions of the esti-
mated model reveals some complexities. First, for all 
of the observations with a boundary value of one in 
the dependent variable, the corresponding predictions 
by definition are less than one. Second, in all of the 
estimated models, there are systematic differences in 
the remaining residuals, depending on the size of the 
participation rate. A small-scale Monte Carlo simula-
tion exercise confirms that the proposed RESET tests 
are useful for detecting neglected non-linearities in 
small samples. In their robust form, the RESET tests 
are always properly sized and equipped with power in 
approximately all of the considered cases.
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